基于鲸鱼算法的极限学习机(ELM)分类算法-附代码
创始人
2025-05-31 00:28:47

基于鲸鱼算法的极限学习机(ELM)分类算法

文章目录

  • 基于鲸鱼算法的极限学习机(ELM)分类算法
    • 1.极限学习机原理概述
    • 2.ELM学习算法
    • 3.分类问题
    • 4.基于鲸鱼算法优化的ELM
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:本文利用鲸鱼算法对极限学习机进行优化,并用于分类问题

1.极限学习机原理概述

典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量 。 为不失一般性,设输 入层与隐含层间的连接权值 w 为:
w=[w11w12...w1,nw21w22...w2n...wl1wl2...wln](1)w =\left[\begin{matrix}w_{11}&w_{12}&...&w_{1,n}\\ w_{21}&w_{22}&...&w_{2n}\\ ...\\ w_{l1}&w_{l2}&...&w_{ln} \end{matrix}\right]\tag{1} w=​w11​w21​...wl1​​w12​w22​wl2​​.........​w1,n​w2n​wln​​​(1)
其中,wnw_nwn​表示输入层第iii个神经元与隐含层第jjj个神经元间的连接权值。

设隐含层与输出层间的连接权值 , 为β\betaβ:
β=[β11β12...β1mβ21β22...β2m...βl1βl2...βlm](2)\beta =\left[\begin{matrix} \beta_{11}&\beta_{12}&...&\beta_{1m}\\ \beta_{21}&\beta_{22}&...&\beta_{2m}\\ ...\\ \beta_{l1}&\beta_{l2}&...&\beta_{lm} \end{matrix}\right] \tag{2} β=​β11​β21​...βl1​​β12​β22​βl2​​.........​β1m​β2m​βlm​​​(2)
其中,自βjk\beta_{jk}βjk​表示隐含层第 j 个神经元与输出层第 k个神经元间的连接权值。

设隐含层神经元的阈值值 b 为:
b=[b1b2...bl](3)b =\left[\begin{matrix}b_1\\ b_2\\ ...\\ b_l \end{matrix}\right]\tag{3} b=​b1​b2​...bl​​​(3)
设具有 Q 个样本的训练集输入矩阵 X 和输出矩阵 Y 分别为
X=[x11x12...x1Qx21x22...x2Q...xn1xn2...xnQ](4)X =\left[\begin{matrix}x_{11}&x_{12}&...&x_{1Q}\\ x_{21}&x_{22}&...&x_{2Q}\\ ...\\ x_{n1}&x_{n2}&...&x_{nQ} \end{matrix}\right]\tag{4} X=​x11​x21​...xn1​​x12​x22​xn2​​.........​x1Q​x2Q​xnQ​​​(4)

KaTeX parse error: Undefined control sequence: \matrix at position 11: Y =\left[\̲m̲a̲t̲r̲i̲x̲{y_{11},y_{12},…

设隐含层神经元的激活函数为 g(x),则由图1 可得, 网络的输出 T 为:
T=[t1,..,tQ]m∗Q,tj=[t1j,...,tmj]T=[∑i=1tβi1g(wixj+bi)∑i=1tβi2g(wixj+bi)...∑i=1tβimg(wixj+bi)]m∗1,(j=1,2,...,Q)(6)T = [t_1,..,t_Q]_{m*Q},t_j = [t_{1j},...,t_{mj}]^T =\left[\begin{matrix}\sum_{i=1}^t\beta_{i1}g(w_ix_j + b_i)\\ \sum_{i=1}^t\beta_{i2}g(w_ix_j + b_i)\\ ...\\ \sum_{i=1}^t\beta_{im}g(w_ix_j + b_i) \end{matrix}\right]_{m*1},(j=1,2,...,Q)\tag{6} T=[t1​,..,tQ​]m∗Q​,tj​=[t1j​,...,tmj​]T=​∑i=1t​βi1​g(wi​xj​+bi​)∑i=1t​βi2​g(wi​xj​+bi​)...∑i=1t​βim​g(wi​xj​+bi​)​​m∗1​,(j=1,2,...,Q)(6)
式(6)可表示为:
Hβ=T’(7)H\beta = T’ \tag{7} Hβ=T’(7)
其中, T’为矩阵 T 的转置; H 称为神经网络的隐含层输出矩阵 , 具体形式如下 :
H(w1,...,wi,b1,...,bl,x1,...,xQ)=[g(w1∗x1+b1)g(w2∗x1+b2)...g(wl∗x1+bl)g(w1∗x2+b1)g(w2∗x2+b2)...g(wl∗x2+bl)...g(w1∗xQ+b1)g(w2∗xQ+b2)...g(wl∗xQ+bl)]Q∗lH(w_1,...,w_i,b_1,...,b_l,x_1,...,x_Q) =\left[\begin{matrix} g(w_1*x_1 + b_1)&g(w_2*x_1 + b_2)&...&g(w_l*x_1 + b_l)\\ g(w_1*x_2 + b_1)&g(w_2*x_2 + b_2)&...&g(w_l*x_2 + b_l)\\ ...\\ g(w_1*x_Q + b_1)&g(w_2*x_Q + b_2)&...&g(w_l*x_Q + b_l) \end{matrix}\right]_{Q*l} H(w1​,...,wi​,b1​,...,bl​,x1​,...,xQ​)=​g(w1​∗x1​+b1​)g(w1​∗x2​+b1​)...g(w1​∗xQ​+b1​)​g(w2​∗x1​+b2​)g(w2​∗x2​+b2​)g(w2​∗xQ​+b2​)​.........​g(wl​∗x1​+bl​)g(wl​∗x2​+bl​)g(wl​∗xQ​+bl​)​​Q∗l​

2.ELM学习算法

由前文分析可知,ELM在训练之前可以随机产生 w 和 b , 只需确定隐含层神经元个数及隐含层和神经元的激活函数(无限可微) , 即可计算出β\betaβ 。具体地, ELM 的学习算法主要有以下几个步骤:

(1)确定隐含层神经元个数,随机设定输入层与隐含层间的连接权值 w 和隐含层神经元的偏置 b ;

(2) 选择一个无限可微的函数作为隐含层神经元的激活函数,进而计算隐含层输出矩 阵 H ;

(3)计算输出层权值:β=H+T′\beta = H^+T'β=H+T′

值得一提的是,相关研究结果表明,在 ELM 中不仅许多非线性激活函数都可以使用(如 S 型函数、正弦函数和复合函数等),还可以使用不可微函数,甚至可以使用不连续的函数作为激 活函数。

3.分类问题

本文对乳腺肿瘤数据进行分类。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本 。

4.基于鲸鱼算法优化的ELM

鲸鱼算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/107559167

由前文可知,ELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用鲸鱼算法对初始权值和阈值进行优化。适应度函数设计为训练集的错误率与测试集的错误率的和,以期望使训练得到的网络在测试集和训练集上均有较好的结果:
fitness=argmin(TrainErrorRate+TestErrorRate)。fitness = argmin(TrainErrorRate + TestErrorRate)。 fitness=argmin(TrainErrorRate+TestErrorRate)。

5.测试结果

鲸鱼算法相关参数如下:

%训练数据相关尺寸
R = size(Pn_train,1);
S = size(Tn_train,1);
N = 20;%隐含层个数
%% 定义鲸鱼优化参数
pop=20; %种群数量
Max_iteration=50; %  设定最大迭代次数
dim = N*R + N*S;%维度,即权值与阈值的个数
lb = [-1.*ones(1,N*R),zeros(1,N*S)];%下边界
ub = [ones(1,N*R),ones(1,N*S)];%上边界

将经过鲸鱼优化后的SSA-ELM与基础ELM进行对比。

预测结果如下图

鲸鱼收敛曲线如下:

在这里插入图片描述

数据结果如下:

鲸鱼优化ELM结果展示:----------------
训练集正确率Accuracy = 93.6%(468/500)
测试集正确率Accuracy = 98.5507%(68/69)
病例总数:569 良性:357 恶性:212
训练集病例总数:500 良性:313 恶性:187
测试集病例总数:69 良性:44 恶性:25
良性乳腺肿瘤确诊:44 误诊:0 确诊率p1=100%
恶性乳腺肿瘤确诊:24 误诊:1 确诊率p2=96%
传统ELM结果展示:----------------
训练集正确率Accuracy = 90.2%(451/500)
测试集正确率Accuracy = 94.2029%(65/69)
病例总数:569 良性:357 恶性:212
训练集病例总数:500 良性:313 恶性:187
测试集病例总数:69 良性:44 恶性:25
良性乳腺肿瘤确诊:43 误诊:1 确诊率p1=97.7273%
恶性乳腺肿瘤确诊:22 误诊:3 确诊率p2=88%

从上述数据可以看出,鲸鱼-ELM训练得到的网络,无论是在测试集和训练集上的正确率均高于基础ELM训练得到的网络。鲸鱼-ELM具有较好的性能。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

相关内容

热门资讯

独家讲解.乐乐四川麻将开挂辅助... 独家讲解.乐乐四川麻将开挂辅助神器.详细开挂教程!亲,乐乐四川麻将这个游戏其实有挂的,确实是有挂的,...
「重大发现」财神十三张.可以开... 您好:财神十三张这款游戏可以开挂,确实是有挂的,需要了解加客服微信【9951342】很多玩家在这款游...
重大通报“大同麻将确实是有挂”... 亲.大同麻将这款游戏是可以开挂的,确实是有挂的,通过添加客服【8487422】很多玩家在这款游戏中怀...
实测分享“广西八一字牌透视软件... 您好:广西八一字牌这款游戏可以开挂,确实是有挂的,需要软件加微信【6355786】,很多玩家在广西八...
实测分享“微信群拼三张到底有挂... 您好:微信群拼三张这款游戏可以开挂,确实是有挂的,需要软件加微信【8700483】,很多玩家在微信群...