狄利克雷函数是一个定义在实数范围上、值域不连续的函数。狄利克雷函数的图像以Y轴为对称轴,是一个偶函数,它处处不连续,处处极限不存在,不可黎曼积分。这是一个处处不连续的可测函数。
基本性质
1、定义域为整个实数域R。
2、值域为{0,1}。
3、函数为偶函数。
4、无法画出函数图像,但是它的函数图像客观存在。
5、以任意正有理数为其周期,无最小正周期(由实数的连续统理论可知其无最小正周期)。
上一篇:(必备盘点)"口袋十三水有没有挂"开挂教程分析
下一篇:重大发现“闽乐乐五十K.怎么开挂”(揭秘曝光猫腻)